본문




제품 정보
Deep Metric Learning for K Nearest Neighbor Classification
Date | 2023.04.28 |
---|---|
Speaker | 김철규 |
- 이전글Domain-Adversarial Training of Neural Networks 23.05.19
- 다음글Physics–informed Bayesian optimization - Revisited 23.04.28
Topic:
Deep Metric Learning for K Nearest Neighbor Classification
Keywords:
K Nearest Neighbor
Distance metric learning
Prototype reduction
Reference:
T. Liao, Z. Lei, T. Zhu, S. Zeng, Y. Li and C. Yuan, "Deep Metric Learning for K Nearest Neighbor Classification," in IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 1, pp. 264-275, 1 Jan. 2023, doi: 10.1109/TKDE.2021.3090275.
첨부파일
-
KCNN.pdf (1.3M)
31회 다운로드 | DATE : 2023-04-28 15:30:23
관련링크
저작자표시-비영리-동일조건변경허락(BY-NC-SA)
저작자와 출처 등을 표시하면 저작물의 변경, 2차적 저작물의 작성을 포함한 자유이용을 허락합니다.
단 영리적 이용은 허용되지 않고 2차적 저작물에는 원저작물에 적용된 라이선스와 동일한 라이선스를 적용해야 합니다.