본문




제품 정보
Tutorial on Dynamic Distribution Adaptation
Date | 2022.02.09 |
---|---|
Speaker | 김주헌 |
- 이전글Incorporating Domain Knowledge into Neural Networks and Lattice Regression. 22.02.16
- 다음글Deep Self-Evolution clustering 22.02.16
Topic:
Transfer Learning with Dynamic Distribution Adaptation
Keywords:
Transfer learning
Domain adaptation
Distribution alignment
Deep learning
Subspace learning
Kernel method
Reference:
J. Wang, Y. Chen, W. Feng, H. Yu, M. Huang, and Q. Yang, “Transfer learning with dynamic distribution adaptation,” ACM Transactions on Intelligent Systems and Technology, vol. 11, no. 1, pp. 1–25, 2020, doi:10.1145/3360309.
첨부파일
-
Seminar_20220208_SKKU_JuhuhnKim.pdf (1.0M)
47회 다운로드 | DATE : 2022-02-16 16:46:21
관련링크
저작자표시-비영리-동일조건변경허락(BY-NC-SA)
저작자와 출처 등을 표시하면 저작물의 변경, 2차적 저작물의 작성을 포함한 자유이용을 허락합니다.
단 영리적 이용은 허용되지 않고 2차적 저작물에는 원저작물에 적용된 라이선스와 동일한 라이선스를 적용해야 합니다.