본문




제품 정보
Balanced Distribution Adaptation for Transfer Learning
Date | 2022.01.12 |
---|---|
Speaker | 김주헌 |
- 이전글Introduction of Knowledge distillation 22.02.04
- 다음글Generative Oversampling with a Contrastive Variational Autoencoder 22.02.03
Topic:
Balanced Distribution Adaptation for Transfer Learning
Keywords:
Transfer learning
Domain adaptation
Distribution adaptation
Class imbalance
Reference:
J. Wang, Y. Chen, S. Hao, W. Feng and Z. Shen, "Balanced Distribution Adaptation for Transfer Learning," 2017 IEEE International Conference on Data Mining (ICDM), 2017, pp. 1129-1134, doi: 10.1109/ICDM.2017.150.
첨부파일
-
Seminar_20220112_SKKU_JuhuhnKim.pdf (989.0K)
47회 다운로드 | DATE : 2022-02-03 21:34:54
관련링크
저작자표시-비영리-동일조건변경허락(BY-NC-SA)
저작자와 출처 등을 표시하면 저작물의 변경, 2차적 저작물의 작성을 포함한 자유이용을 허락합니다.
단 영리적 이용은 허용되지 않고 2차적 저작물에는 원저작물에 적용된 라이선스와 동일한 라이선스를 적용해야 합니다.